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1 Introduction

The emergence of cosmology as a data-driven science in the late 1990s enabled our theories

of the universe to be promoted from mostly speculation to meaningful quantitative investi-

gation. Although many components of what now forms the standard “concordance” ΛCDM

cosmology had been proposed prior to the quantitative revolution and were found to be
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consistent with experiment, among the more surprising revelations was the emergence of a

new scale at around 10−3 eV, associated with an apparent acceleration of the cosmological

expansion. The properties of Nature at this scale have been accessible since the earliest

days of particle physics, and our models of microscopic processes at these energies are now

very well tested. It was therefore surprising to discover that this hitherto mundane scale

was to be associated with an exotic species of matter with energy density Λ ∼ (10−3 eV)4

and equation of state p ≈ −ρ.
The microphysics associated with this energy density remains unknown. The most

parsimonious interpretation of the data requires only Einstein’s “cosmological term,” which

we now know to be degenerate with the aggregate effect of quantum vacuum fluctations.

At a mass scale M these contribute a cosmological effect of order M4. Consequently, if we

take our well-tested quantum-mechanical theories of physics seriously even at comparatively

modest scales (up to MEW ∼ 100GeV – 1 TeV) then without a remarkable cancellation we

encounter a serious disagreement with the data. An alternative interpretation is to suppose

that unknown physics renders the quantum zero-point energy negligible or unobservable.

If this is the case, it is possible that our present phase of acceleration is driven by the

potential energy associated with some scalar field. This field would have to be very light

on large scales in our present vacuum, with mass of order H0 ∼ 10−33 eV, but it might

evade the stringent bounds associated with long-range forces mediated by light bosons if

its mass could be adjusted to be large in regions of high average density. Theories of this

type were proposed by Khoury & Weltman [1, 2], who called such fields “chameleonic” in

view of their ability to vary their properties depending on the environment.1

The chameleon property means that models involving these fields can give rise to suc-

cessful acceleration at late times [5], while remaining consistent with known constraints

on long-range physics. Such models are attractive for another reason, because the require-

ment that the field can respond to local variations in the density of bulk matter means

that couplings to Standard Model states are mandatory. Chameleonic fields are therefore

constrained by precision measurements of the early universe — in particular, observations

of Big Bang Nucleosynthesis (‘BBN’) and the redshift of recombination [5, 6]. As the uni-

verse cools the background dark energy field remains fixed in the minimum of its potential,

whose location slowly drifts. The result is a variation in the mass of any particle to which

dark energy is coupled. However, acceptable models are constructed in such a way that

only small changes in particle mass can be expected, and therefore the constraints from

observations such as BBN are rather weak. Interesting bounds have also been obtained

from a variety of astrophysical and terrestrial processes [7–15].

These couplings also imply the existence of an interesting collider phenomenology.

With the aim of complementing the cosmological and astrophysical tests, our purpose in

this paper is to take the first steps towards understanding the implications of dark energy

corrections for Standard Model processes which can be observed at present and future

particle colliders. A related study has been performed by Kleban & Rabadan [16].

What form would these corrections take? We expect that the dark energy scalar is

1For earlier work, see refs. [3, 4].
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not charged under any of the usual gauge quantum numbers associated with the Standard

Model. Its couplings to Standard Model states are therefore unrestricted by considerations

of gauge invariance. Nevertheless, because bulk mass in the macroscopic world is domi-

nated by hadrons it seems unavoidable for a chameleonic scalar to couple to those degrees

of freedom charged under QCD, namely the quarks and gluons. Unfortunately, hadron

interactions in QCD are non-perturbative in nature and are difficult to study. It is less

obvious that the dark energy is obliged to couple to degrees of freedom charged under the

electroweak SU(2)×U(1) gauge symmetry, but if it does then one might imagine that such

interactions would offer a more tractable probe of the theory than the complicated colour

physics of QCD. Our purpose in this work is to study the comparatively clean experimental

signatures which arise at low energy from the existence of couplings between dark energy

and Standard Model states which carry electroweak quantum numbers.

Interactions between a scalar dark energy species and the electroweak sector need not

be harmless. For example, variation in the dark energy vacuum expectation value could lead

to a shifting fine-structure constant or loss of conservation of electric charge [17, 18]. From

the perspective of collider phenomenology, there is another serious difficulty: fundamental

scalar fields are well-known to depend sensitively on the details of physics in the ultra-violet.

If Standard Model particles can radiate into light chameleon states while participating in

some measurable process, then we must allow for the possibility of significant corrections

to observable Standard Model reactions. Indeed, it is a serious question whether any dark

energy model of this type can be compatible with existing data. It is also important

to understand whether we should expect dramatic signals at impending high-precision

experiments such as the Large Hadron Collider (LHC) at the European Organization for

Nuclear Research (CERN) or at a proposed future International Linear Collider.

In this paper, we study the effect of such radiative corrections. Our results apply to

models of chameleon dark energy, and also to alternatives such as coupled quintessence,

or any beyond-the-Standard-Model scalar species which is light in the laboratory envi-

ronment. Similar issues have been addressed previously by Einhorn & Wudka [19], who

determined the criteria for heavy scalar particles to be screened. However, our results

are not contained in their analysis because the scalar particles which can cause successful

cosmological acceleration must ordinarily be very light in the laboratory environment com-

pared to the electroweak scale, with masses of order . 10−8 eV or lighter. It is the effect of

highly suppressed couplings in the laboratory which allows such particles to have evaded

detection, rather than the significant energy cost of producing them in collisions.

In section 2.1 we give a brief summary of ultra-violet effects in scalar field theories,

before going on to review the formalism used to study corrections to electroweak precision

observables (section 3). In section 3.1 we study corrections to the width of the Z boson (a

tree-level effect), and show that it leads to a weak constraint. In section 3.2 we identify a

class of loop effects which lead to stronger constraints, the so-called “oblique” corrections.

The key quantities we require to compute them are the vacuum polarizations of the W±,

Z and γ bosons, which are obtained in section 4. In section 4.2 we interpret these vacuum

polarizations in terms of an effective Lagrangian which makes their physical content trans-

parent. In section 5 we discuss our findings and indicate how our results could be extended
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to a larger zoology of processes, including so-called flavour-changing neutral currents. In

particular, in section 5.1 we discuss the conditions under which the largest corrections are

“screened,” meaning that they do not enter in any measurable relationship between observ-

ables. It is only when screening occurs that the model is automatically compatible with the

simplest predictions of the Standard Model. In section 5.2 we determine the constraints

which can be obtained from data obtained by present-day colliders, and discuss the role

of future hadron-hadron or e+e− colliders. Finally, in section 6 we state our conclusions.

Some technical details are collected in two appendices.

We choose units throughout such that ~=c=1. Our metric convention is (−,+,+,+),

so that on-shell particles have negative invariant momenta. Spacetime indices are denoted

by lower-case Latin indices {a, b, c, . . .}, and we label the species of vector bosons by upper-

case indices {A,B,C, . . .}.

2 Electroweakly interacting dark energy

2.1 Ultra-violet effects

The problem of sensitivity to ultra-violet effects is universal in any theory of scalar fields.

While it is an obstacle for model-building, UV sensitivity can be exploited as a tool to probe

the theory at energies much higher than those which can physically be realized in particle

accelerators. An important example of this occurs in the Higgs sector of the Standard

Model, which has many parallels with the case of interacting dark energy. For this reason

we digress to give a brief discussion of the Higgs case, before returning to dark energy in

section 2.2.

All particles which gain their mass via the Higgs mechanism are entitled to radiate

into Higgs states, and in consequence it was pointed out long ago by Veltman that elec-

troweak quantities can receive large Higgs contributions, up to some scale above which

radiation is suppressed. This scale is presumably determined by a more complete theory of

microscopic interactions, of which the Standard Model is an effective low energy limit. The

Standard Model including a Higgs sector is precisely renormalizable, but if the Higgs is

decoupled from the theory by taking its mass to infinity, MH → ∞, we should recover the

divergences of the Higgsless case. One can therefore think of MH as a soft effective cutoff

corresponding to the scale of new physics [20]. Any large Higgs contributions must appear

experimentally as deviations from the tree-level expectation, which can be summarized in

terms of Veltman’s “ρ-parameter.” In principle, this could receive corrections from the

Higgs sector of the form

ρ ≡ M2
W

M2
Z cos2 θ

= 1 + a0g
2M

2
H

M2
Z

+ a1g
2 ln

M2
H

M2
Z

+ · · · , (2.1)

where a0 and a1 are pure numbers which must be calculated, g is a coupling constant, and

‘· · · ’ denotes the effect of higher-order radiative corrections which we have neglected. The

current experimental constraint is ρ = 1.0004+0.0008
−0.0004 [21], so if a0 6= 0 one would obtain

extremely stringent constraints on MH . Unfortunately, in the Standard Model it turns out

that a0 = 0 [22, 23], leading to a considerably weaker bound MH . 215GeV. This effect

– 4 –



J
H
E
P
0
9
(
2
0
0
9
)
1
2
8

occurs in all Standard Model observables and has become known as the screening theorem,

because it protects low-energy observations from the effect of coupling to a large phase

space of scalar Higgs states. It has been shown that the screening phenomenon extends to

all orders in the loop expansion in the limit MH → ∞ [19, 24, 25].

The same principles apply to any light scalar field. What happens if Standard Model

particles are permitted to radiate into dark energy states? In the laboratory environment

where the W± and Z masses can be measured, the dark energy quanta are typically light.

In this case, we must expect contributions to electroweak observables of the form described

by eq. (2.1), with the Higgs mass MH replaced by whatever scale M determines the size of

the phase space of available states, and the coupling g2 replaced by whatever quantity sets

the interaction strength of dark energy with ordinary matter, which is typically a number

of order M2
Z/M

2. It then becomes extremely significant whether dark energy exhibits a

similar screening effect, for if a0 6= 0 then ρ will generically receive corrections of O(1). Such

large corrections could easily lead to an unacceptable conflict with precision electroweak

data. On the other hand, if the dark energy does exhibit screening then the corrections

to ρ are roughly of order O[(MZ/M)2 lnM2/M2
Z ] and are therefore very small for any

phenomenologically reasonable choice of M .

We would like to emphasize that there is no reason of principle for the Higgs or any

other scalar species to exhibit this sort of radiative screening. In the Higgs sector, a so-

called “custodial” global SU(2) symmetry becomes exact in the limit where the hypercharge

gauge coupling g1 vanishes [26], which guarantees equality of the vector boson masses, but

does not guarantee screening [20].2 In the absence of any specific reason to think otherwise,

one must imagine that a generic scalar field theory interacting with the electroweak sector

would contribute to eq. (2.1) with a0 6= 0. Although it may be possible to fine-tune a

model of this type to be consistent with precision electroweak observations, this solution

would be highly unattractive. Indeed, one would have traded an unappealing fine-tuning

in the cosmological constant for a fine-tuning in the scalar model intended to replace it,

and little would have been gained.

2.2 The interaction Lagrangian

We will choose to work with a theory of the broken phase of the electroweak force in which

the photon and the massive vector bosons W± and Z interact with a single dark energy

2In their proof that the Higgs exhibits radiative screening to all orders in the loop expansion, Einhorn

& Wudka made essential use of the SU(2) custodial symmetry [25]. However, although the existence of this

symmetry is necessary, it is not sufficient. An integral part of of Einhorn & Wudka’s argument consists of a

power-counting procedure entirely unconnected with the custodial symmetry, which determines where the

leading divergences can appear as MH → ∞.
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scalar χ according to the action

S = −1

4

∫

d4x

{

2B(βχ)(∂aW+b − ∂bW+a)(∂aW
−
b − ∂bW

−
a ) + 4m2

WBH(βHχ)W+aW−
a

+B(βχ)(∂aZb − ∂bZa)(∂aZb − ∂bZa) + 2m2
ZBH(βHχ)ZaZa

+B(βχ)(∂aAb − ∂bAa)(∂aAb − ∂bAa)

}

, (2.2)

where W±
a and Za are the gauge fields associated with the W± and Z, respectively, and Aa

is the gauge field associated with the photon. Eq. (2.2) should be thought of as an effective

Lagrangian valid after integrating out the Goldstone modes of the Higgs, as emphasized by

Burgess & London [27, 28] following earlier work in refs. [29, 30]. Only invariance under

the electromagnetic U(1) gauge group is required.

The quantities mW and mZ are the Lagrangian parameters corresponding to the mass

of the W± and Z, which are related via a renormalization prescription to the physical

masses MW and MZ . In addition, we have introduced two arbitrary functions B(βχ) and

BH(βHχ) which describe how the scalar χ couples to the gauge boson kinetic and mass

terms. These couplings are associated with mass scales M ≡ β−1 and MH ≡ β−1
H (not nec-

essarily identical3) which control the relative strength of the interaction between dark en-

ergy and the weak gauge bosons, and between dark energy and the Higgs field respectively.

Throughout this paper, we assume that the dark energy quanta χ have some fixed

mass Mχ, which is not subject to renormalization. This is tantamount to treating the

entire scalar sector as an effective field theory, in which quantum effects have already

been included, and for which we only wish to assess the influence of radiative corrections

on the bare electroweak sector. This is appropriate for a phenomenological model such

as a chameleon, which need not be a fundamental particle in its own right, but rather

may represent the collective effect of degrees of freedom at high energy which have been

integrated out of the theory. In any such effective field theory it is difficult to maintain light

scalar masses because quantum corrections will typically renormalize these to the scale of

the cutoff unless they are protected by a symmetry. This difficulty afflicts all particulate

theories of dark energy equally, and we have nothing new to contribute to this debate.

The coupling functions B and BH are unknown, although they will be subject to

certain restrictions if we wish the dark energy field to exhibit an acceptable chameleon

phenomenology. We will not impose any such restrictions, except to observe that the

coupling functions for the W±, Z and γ kinetic terms must be the same if eq. (2.2) is

to descend from an unbroken gauge-invariant theory of SU(2) × U(1) at higher energies.

Moreover, the coupling functions multiplying the mass terms must be the same if we

suppose that the W± and Z obtain their masses via spontaneous symmetry breaking, and

that the Higgs sector consists of a minimal SU(2) doublet. Since we wish to retain both

these phenomenological successes of the Standard Model, we are left with at most two free

coupling functions. In many cases, however, we expect that eq. (2.2) will not have a UV

completion unless these couplings are the same, because the longitudinal polarizations of

the Z and W± are associated with Goldstone modes of the Higgs.

3Note that MH is not the Higgs mass, which was discussed in section 2.1 but does not appear in the

remainder of this paper.
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Z

f̄

f

(a)

Z∗

Z

χ

f

f̄

(b)

Figure 1. Contributions to the decay width of the neutral Z boson. In (a), an on-shell Z decays

to a fermion-antifermion pair f f̄ . In (b), the decay is precipitated by emission of a dark energy

particle, χ, leaving the original Z in an off-shell excited state which subsequently decays to f f̄ .

If the final-state χ is not observed, these processes cannot be distinguished and therefore both

contribute to the decay width into f f̄ .

3 Electroweak precision observables

3.1 Constraints from Z decay

Let us first consider corrections where some dark energy quanta are present in the final

state. These corrections can be considered as a form of “dark energy bremsstrahlung”.

Since the final-state dark energy particles escape the detector and are not observed, such

reactions look like extra contributions to the cross-section for the corresponding bare Stan-

dard Model process. Among the best-measured of these is the width for Z decay, depicted

for decay into a fermion-antifermion pair f f̄ of common mass Mf with and without dark

energy dressing in figures 1(a) and (b) respectively. In the dressed process (b) the on-

shell 4-momentum of one outgoing fermion (which we label ‘2’ by convention) is fixed by

conservation of 3-momentum. The energy of the other fermion is determined by energy

conservation in terms of a quadratic equation to be given below. We show in A that the

differential contribution to the Z decay width from emission of a single dark energy particle

of energy Eχ into a solid angle dΩχ satisfies

dΓ(Z → χff̄)

Γ(Z → f f̄)
=

B̄′2

(2π)3
M2
Z

M2
dÊχ dΩχ

√

Ê2
χ − y2

√

Ê2
1 − x2

J(1 − Êχ − Ê1)(1 + r̂2)2

Mχff̄

Mff̄

, (3.1)

where M = β−1 is the dark energy coupling scale, and x and y are defined by

x ≡
M2
f

M2
Z

(3.2)

y ≡
M2
χ

M2
Z

. (3.3)
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The outgoing dark energy scalar is taken to have 3-momentum q. We introduce dimen-

sionless “hatted” energies and momentum according to the rules

Êi =
Ei
MZ

(3.4)

q̂ =
q

MZ
. (3.5)

where i ∈ {χ, 1, 2}. The quantity r̂2 measures the degree to which the intermediate Z∗ is

off-shell, and satisfies

r̂2 ≡ −1 + 2Êχ − y2. (3.6)

It is equal to −1 for an intermediate Z which is precisely on-shell, although in this limit

the finite width of the Z cannot be ignored. The energy Ê1 must be a solution of the

quadratic equation

Ê2
1

{

cos2 θ(Ê2
χ − y2) − (1 − Ê2

χ)
}

+ Ê1(1 − Êχ)(1 + y2 − 2Êχ)

=
1

4
(1 + y2 − 2Êχ)

2 + x2(cos2 θ)(Ê2
χ − y2), (3.7)

where θ is the angle between q and the 3-momentum of fermion 1. Although two solutions

for Ê1 exist, one is always spurious. The solutions change roles at θ = π/2. Moreover, J

is a Jacobian arising from fixing Ê1 to be a solution of eq. (3.7). It is defined by

J =

∣

∣

∣

∣

∣

1 + Ê1

1 + (Ê2
χ − y2)1/2(Ê2

1 − x2)−1/2 cos θ

1 − Êχ − Ê1

∣

∣

∣

∣

∣

. (3.8)

The matrix element Mff̄ satisfies

Mff̄ =
√

1 − 4x2
{

6gLgRx
2 + (g2

L + g2
R)(1 − x2)

}

, (3.9)

where gL and gR are the left- and right-handed couplings of the fermion species to the Z;

and Mχff̄ is a complicated function whose form is determined in A and which can be read

off from eqs. (A.9)–(A.10) or eqs. (A.14)–(A.15). After integrating over Êχ and the solid

angle Ωχ, eq. (3.1) determines the cross-section for any dressed process in terms of the bare

standard model cross-section. In a generic model without fine-tuning, for which B̄′ ∼ 1,

this rate takes the form
Γ(Z → χff̄)

Γ(Z → f f̄)
=

1

16π3

M2
Z

M2
Iχff̄ , (3.10)

and Iχff̄ is found to be numerically of order Iχff̄ ≈ 0.2 for a wide range of fermion

masses and couplings. The width of the Z into visible particles is predicted to be ΓZ =

2.4952 GeV within the Standard Model, with a small theoretical error. Its measured value

is ΓZ = (2.4952 ± 0.0023) GeV [21], implying that any enhancement due to dark energy

will be compatible with observation only if M & 0.66MZ ∼ 60 GeV. Moreover, our neglect

of the Z width means that this is a conservative over-estimate. Thus, under the very

mild constraint M & MZ it seems clear that there will be no disagreement with the data.

Processes similar to figure 1(b), but with emission of more than one dark energy particle

into the final state, are suppressed by extra powers of (MZ/M)2(2π)−3.

– 8 –
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Dark energy bremsstrahlung could have consequences beyond enhancements to decay

widths and cross-sections of the sort calculated above. Soft bremsstrahlung effects could

be significant in QCD if they initiated jet formation by destabilizing quarks or gluons, or

if their aggregate effect could be resolved by partons participating in a sufficiently hard

collision. However, such effects are likely to be important only if the dark energy couples at

a very low scale. We can estimate that the S-matrix element for any bremsstrahlung event

should controlled by the square of the single-chameleon coupling constant, of order Mf/M

for a fermion of mass Mf , and a phase space factor of order ln s/M2
χ, where s ≈ M2

EW is

the usual Mandelstam variable and Mχ . 10−8 eV is the dark energy mass in the beam

pipe [31, 32]. The logarithm is roughly of order 102. A significant effect can occur if the

product (Mf/M)2 lnM2
EW/M

2
χ ∼ 1, but unless the dark energy scalar is very light this

combination is generally negligible whenever the coupling scale M is modestly larger than

the mass of the fermion species in question, of order M & 102Mf .

3.2 Oblique corrections

In addition to bremsstrahlung processes, the perturbation theory constructed from eq. (2.2)

describes processes by which Standard Model particles may radiate into an intermediate

state containing an arbitrary number of dark energy quanta. If we exclude reactions in

which dark energy particles are present in the initial or final state then all such processes

are built out of interactions which are already present in the bare Standard Model. To

study them we should begin with a given Standard Model reaction, exemplified for the

case of 2 → 2′ scattering of light fermions in figure 2(a), and account for the effect of dark

energy activity. This activity can naturally be divided into three categories, corresponding

to figures 2(b)–(d).

In figure 2(b), dark energy loops dress each vertex in the bare reaction with so-called

daisies, whereas in figure 2(c) dark energy quanta bridge between two different vertices.

More complicated bridges, including internal vertices which may themselves be dressed by

daisies, can also be constructed.4 Together with processes where one or more dark energy

quantum appears in the final state, these are examples of so-called straight corrections

which depend on the process which under consideration [33].

In contradistinction, figure 2(d) represents an example of an oblique correction, which

involves intermediate dark energy states only in the interior of a gauge boson propagator.

Once an oblique correction has been calculated for a given species of gauge field, it is

universal for all processes involving exchange of that boson. In principle, these corrections

are all equally important and for a general momentum transfer q it is a complicated process

to compute them. However, we argue in B that the daisies and bridges which constitute the

straight corrections are momentum-independent up to terms of order q2/M2, where M >

MEW is a dark energy coupling scale characteristic of the fermion species which participate.

Provided they are the same for all species, such momentum-independent terms can be

absorbed in a renormalization of the Fermi constant, GF , and are therefore unobservable.

4Note, however, that we do not include loops in which the chameleon interacts with itself: as has been

said, these are assumed to have been absorbed in the parameters of the dark energy model.
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(a)

(b) (c)

(d)

Figure 2. Classes of dark energy diagrams associated with Standard Model reactions, exemplified

in the case of 2 → 2′ fermion scattering. Solid lines with arrows represent fermions; wavy lines

represent the gauge bosons of the electroweak force; and plain lines represent dark energy particles.

The bare Standard Model process is given in (a). In (b), the vertices of the reaction are dressed

by daisies which begin and end at the same vertex. In (c), dark energy quanta bridge between two

different vertices. Corrections such as (b)–(c) which depend on the process under study (in this

case, depending on the initial and final fermion species, and the identity of the exchanged boson)

are called straight. On the other hand, corrections such as (d) which are universal for all processes

involving the exchange of a given species of vector boson are called oblique. (In principle there are

also oblique corrections to the fermion species, but typically these do not contribute significantly

to observable quantities.) In general, the dark energy correction to (a) consists of summing over all

possible combinations of processes similar to (b)–(d).

We have seen in section 3.1 that in any phenomenologically acceptable scenario we expect

M ≫ MEW, implying that the remaining contributions can be neglected in comparison

with that of the oblique correction, figure 2(d), which is present at order q2/M2
EW. Oblique

corrections will therefore give the most stringent constraints if they turn out to require

M & 100 GeV.

The effect of physics beyond the Standard Model has been studied by many authors,

and is frequently dominated by oblique corrections. Peskin & Takeuchi [33, 34] introduced

a simple parametrization of them in terms of three quantities S, T and U which quantify the

magnitude of corrections near zero momentum transfer,5 but assumed that whatever new

physics was responsible for modifying the properties of the gauge bosons was heavy. This

assumption was later removed by Maksymyk, London & Burgess [37, 38], who introduced

new parameters V , W and X to quantify the significance of radiative corrections around

the Z resonance.6 In the remainder of this section, we briefly review the parametrization

of oblique corrections in terms of S, T , U , V , W and X.

5An alternative parametrization was proposed simultaneously by Altarelli & Barbieri [35, 36].
6See also refs. [39, 40].
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χ

W∓, Z

W±, Z, γ W±, Z, γ

(a)
χ

W±, Z, γ W±, Z, γ

(b)

Figure 3. Processes contributing to the self-energy of the intermediate vector bosons γ, W± and Z.

An initial vector boson state, represented by a wavy line, radiates into scalar quanta χ (represented

by a solid line) which are eventually re-absorbed to yield a final state characterized by the same

quantum numbers and momentum as the initial state.

The one-loop obliquely-corrected vector boson propagators are obtained by summing

over an arbitrary number of insertions of the one-loop diagrams of figure 3 in the tree-level

propagator. In unitarity gauge, where the three would-be Goldstone modes supplied by

the Higgs doublet have been absorbed as longitudinal polarizations of the W± and Z, the

tree-level propagator for each massive vector boson can be written

〈Xa
A(k1)X

†b
B (k2)〉 = −i(2π)3δ(k1 + k2)δAB

(

ηab +
kakb

m2
A

)

∆(k2), (3.11)

where we have defined k ≡ k1 = −k2 and the quantum field XA is built out of the creation

and annihilation operators corresponding to a vector boson of species A and mass mA.

The tree-level propagator function satisfies ∆−1(k2) = k2 +m2
A. The photon propagator

can be written in an analogous form, with mA 7→ 0 in the function ∆(k2) and m2
A 7→ −k2

in the tensor prefactor.

We define the sum of the one-particle-irreducible diagrams which connect an initial-

state vector boson of species A with a final-state vector boson of species B and carrying

momentum k to be iΠab
AB(k2)/(2π)4. Since the Z and γ are electrically neutral they are

permitted to mix beyond tree-level, which would correspond to a non-zero vacuum polar-

ization Πab
Zγ . However, inspection of the interactions in eq. (2.2) shows that eq. (2.2) does

not induce extra mixing and we can set Πab
Zγ = 0.

With this simplification, the full propagator can be resummed using the Schwinger-

Dyson equations. The result is that the propagator function ∆ in eq. (3.11) should be

replaced by a resummed function ∆′, which for each species A satisfies

∆′(k2) =
1

k2 +m2
A − Π

(0)
AA(k2)

, (3.12)

where we have written

Πab
AB(k2) = ηabΠ

(0)
AB(k2) + kakbΠ

(2)
AB(k2), (3.13)

and, for external states which consist only of light fermions of invariant mass-squared

M2
f , eq. (3.12) is valid up to corrections of order M2

f /M
2
W which we neglect. Therefore,

the quadratic term Π
(2)
AB will not appear in the remainder of this paper, and to simplify

notation we write all subsequent formulae in terms of the abbreviation ΠAB ≡ Π
(0)
AB .
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3.3 The S, T , U , V and W parameters

In the absence of radiative corrections, the Standard Model entails the existence of simple

relationships among the observables of the theory. Since there are three free quantities

which parametrize the broken phase— the two gauge couplings g1 and g2, together with

the Higgs vacuum expectation value — it is necessary to take three masses or couplings

from experiment. Once this so-called ‘input parameter set’ has been selected, all other

observables can be expressed in terms of the chosen three. In the electroweak sector it

is conventional to choose the input parameter set to comprise the fine structure constant

α, the Fermi coupling GF , and the Z mass, MZ , which are presently the best measured

electroweak quantities.

With the inclusion of radiative corrections, the original simple relationships among

observables are modified. Indeed, in order to match the precision with which accelerator

experiments can measure electroweak parameters, it is usually necessary to include several

orders of radiative corrections which arise purely within the Standard Model. It may

happen that these corrections are insufficient to account for the deviation of all observables

from their tree-level values. The remainder must be ascribed to new physics: it is only this

contribution from new physics which we wish to attribute to the effect of a dark energy

scalar species. The relevant observables other than {α,GF ,MZ} are the mixing angle,

θW, and the W± mass, MW , together with any cross-sections or decay rates which can be

written in terms of all these quantities. At tree level, θW and MW are related to the input

parameter set via the rules

sin2 θW(1 − sin2 θW) =
α

16
√

2πM2
ZGF

, (3.14)

M2
W = M2

Z cos2 θW, (3.15)

where cos θW in eq. (3.15) is to be computed from the solution to eq. (3.14).

The physical mass of a single-particle state corresponding to a vector boson is given

by the pole of eq. (3.12), which renormalizes the Lagrangian parameter mA. Therefore,

the physical mass MA satisfies

M2
A = M̃2

A

(

1 − ΠAA(−M2
A)

M2
A

)

, (3.16)

where we have introduced a useful notation in which a tilde, as in M̃A, denotes the value

taken by a quantity in the Standard Model without oblique corrections. At tree-level,

M̃2
A is simply equal to m2

A, but eq. (3.16) continues to apply to leading order in radiative

corrections even if we allow the vector boson masses to receive renormalizations from loops

purely within the Standard Model. On the other hand, the Fermi constant GF is defined

as the coupling of the charged-current interaction at zero momentum transfer and receives

an oblique correction [33, 34]

GF = G̃F

(

1 +
ΠWW (0)

M2
W

)

. (3.17)
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Likewise, the fine structure constant measures the electromagnetic interaction at zero mo-

mentum transfer and receives an oblique correction from the photon self-energy,

α = α̃
(

1 + Π̂γγ(0)
)

, (3.18)

where Π̂γγ(k
2) ≡ Πγγ(k

2)/k2. Eqs. (3.17) and (3.18) apply even if we allow G̃F and α̃ to

receive corrections from pure Standard Model loops. It follows that we can write

s2W
s̃2W

= 1 +
α

4s2W(c2W − s2W)
S − αc2W

c2W − s2W
T (3.19)

and

M2
W

M̃2
W

= 1 − α

2(c2W − s2W)
S +

αc2W
c2W − s2W

T +
α

4s2W
U, (3.20)

where we have introduced the useful abbreviations sW ≡ sin θW and cW ≡ cos θW, and the

parameters S, T and U are defined by [33, 34, 37]7

α

4s2Wc
2
W

S ≡ ΠZZ(0) − ΠZZ(−M2
Z)

M2
Z

− Π̂γγ(0), (3.21)

αT ≡ ΠZZ(0)

M2
Z

− ΠWW (0)

M2
W

, (3.22)

α

4s2W
(U + S) ≡ ΠWW (0) − ΠWW (−M2

W )

M2
W

− Π̂γγ(0). (3.23)

Experimentally observable quantities such as the Veltman ρ-parameter, eq. (2.1), can be

written in terms of S, T and U .

Electroweak data is not limited to measurements of the W± and Z masses and the

mixing angle, but includes cross-sections and decay rates. The standard LSZ formula [41]

implies that the first-order shifts from oblique corrections in these quantities can be ob-

tained from their tree-level values together with appropriate multiplication by wave func-

tion renormalization factors ZA, defined for each species of massive boson A by the rule

ZA ≡ 1 +
d

dk2
ΠAA(k2)

∣

∣

∣

∣

k2=−M2

A

. (3.24)

7Certain terms in these expressions change sign depending on the choice of signature for the metric.

Under reverse of sign convention (which gives the timelike convention widely used in particle physics, in

comparison with the spacelike convention adopted in this paper), the formulae for S, T and U should be

modified by reversing the sign of each mass-square M2

A, together with extra signs for each explicit factor

of k2 or dk2. This explains the difference in signs between eqs. (3.21)–(3.23) and the original references,

which used the signature (+,−,−,−). Note also that in theories where the Z and γ mix beyond tree-level,

S and U receive extra contributions. For details, see refs. [33, 34, 37].
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To take account of these factors, it is necessary to introduce two further parameters V and

W [37, 39, 40]8

αV ≡ d

dk2
ΠZZ(k2)

∣

∣

∣

∣

k2=−M2

Z

− ΠZZ(0) − ΠZZ(−M2
Z)

M2
Z

, (3.25)

αW ≡ d

dk2
ΠWW (k2)

∣

∣

∣

∣

k2=−M2

W

− ΠWW (0) − ΠWW (−M2
W )

M2
W

. (3.26)

Oblique dark energy corrections to all purely electroweak observables can be written in

terms of S, T , U , V and W .

These parameters have simple physical interpretations. S is a measure of the differ-

ence between the wavefunction renormalization of the Z boson and the photon, γ. In an

interacting theory, a state prepared with definite particle content and momentum at some

early time may not manifest the same content when probed at a later time because the

particles may radiate into any other states to which they couple. The probability for this

to occur is quantified by the wavefunction renormalization.

T is a measure of the extra isospin breaking at zero momentum which is contributed

by new physics. This difference manifests itself in the relative strength of the charged-

and neutral-current interactions. The precise balance between these interactions may be

upset by coupling to the dark energy scalar, but in the Standard Model with a minimal

Higgs sector T is unlikely to receive large corrections unless isospin symmetry is broken

explicitly at tree level. Similarly, U is a measure of the difference between the W± and

Z wavefunction renormalizations. Finally, V and W quantify the difference between the

wavefunction renormalizations of the Z and W± bosons, respectively, on the mass-shell,

compared with zero momentum. In what follows, we will see this structure emerge explicitly

from our analysis.

4 Vector boson vacuum polarizations

To evaluate the S, T , U , V and W parameters, one requires an explicit expression for the

vector boson vacuum polarizations. In this section, we obtain the necessary self-energies

by calculating the two one-loop diagrams in figure 3.

4.1 Feynman rules

Our detailed information concerning the properties of the W± and Z bosons comes mostly

from the LEPII experiment, which created these particles abundantly in head-on e+e−

collisions. The W±s and Zs synthesized in this way were produced at rest in the beam-pipe

and spent their entire lifetime within its vacuum, before decaying into other particles which

could subsequently be detected. In the environment of the beam-pipe, we can assume that

the scalar field has a constant vacuum expectation value χ̄ together with small excitations

δχ. To obtain the one-loop vacuum polarization, it is necessary to describe the interactions

8In theories where the Z and γ can mix beyond tree-level, it is necessary to introduce a third new

parameter, X. See ref. [37].
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of the W± and Z to order δχ2. For interactions involving a W+ and W− the relevant

vertices are:

W+
a

W−
b

k2

k3

k1 7→ B̄′β
[

ηab(k2 · k3 − γm2
W ) − kb2k

a
3

]

, (4.1)

W+
a

W−
b

k2

k3

k1

k4

7→ B̄′′β2

2

[

ηab(k2 · k3 − ǫm2
W ) − kb2k

a
3

]

, (4.2)

where B̄′ ≡ B′(βχ̄), B̄′′ ≡ B′′(βχ̄) together with equivalent definitions for BH ; the space-

time inner product is denoted p · q ≡ paqa for any two four-vectors pa and qa; and we have

defined quantities γ and ǫ according to the rules

γ ≡ B̄′
H

B̄′

βH
β

(4.3)

ǫ ≡ B̄′′
H

B̄′′

β2
H

β2
. (4.4)

With this choice of Feynman rules, the diagram of figure 3(a) corresponds to a vacuum

polarization of the form

ΠWW (k2) =
β2

8π2

B̄′2

B̄

∫ 1

0
dx

∫ Λ

0

κ3 dκ

(κ2 + Σ2)2

[

κ2

4
(2k2 + γ2M2

W ) + (xk2 + γM2
W )2

]

, (4.5)

where x is a Feynman parameter, and we have Wick rotated to Euclidean signature before

replacing the Euclidean volume element by 2π2κ3 dκ. The momentum scale Λ is a sharp

cutoff which regulates the maximum Euclidean momentum permitted to circulate in the

loop, and therefore determines the size of the phase space of scalar states to which each

W± couples.9 Finally, Σ2 is an abbreviation for the quantity

Σ2 ≡ x(1 − x)k2 + (1 − x)M2
W + xM2

χ. (4.6)

In writing eqs. (4.5)–(4.6) we have freely replaced m2
W by M2

W , since the correction this

induces is formally of higher order in the loop expansion.

9Power-law divergences in Λ, if they exist, are likely to violate gauge invariant although logarithmic

divergences should be physically meaningful. Also, loop calculations in unitarity gauge are known to

overestimate power law divergences in certain circumstances. These issues were addressed in refs. [27, 28].

In the present case it will turn out that we require only the logarithmic terms. If any power-law divergences

were present, however, then it would not be possible to interpret the result as a quantitative prediction.

Instead — provided such powers were compatible with näıve dimensional analysis (which excludes the

possibility of overestimation) and the gauge symmetries of the model — the correct interpretation would

be that the calculation under discussion was sensitive to the details of UV physics.
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The diagram of figure 3(b) gives a somewhat simpler contribution,

ΠWW (k2) = − β2

8π2

B̄′2

B̄

∫ 1

0
dx

∫ Λ

0

κ3 dκ

κ2 +M2
χ

Ω

2
(k2 + ǫM2

W ), (4.7)

where Ω is a dimensionless combination which measures the curvature of the coupling

function B in the vacuum,

Ω ≡ B̄′′B̄

B̄′2
. (4.8)

We also require the vacuum polarization for the Z boson and the photon, γ. How-

ever, no further calculation is required since the relevant Feynman rules can be obtained

from (4.1)–(4.2), and the necessary vacuum polarizations can likewise be obtained from

eqs. (4.5)–(4.7). Since the γ and Z are their own antiparticles, each vertex in (4.1)–(4.2)

acquires a symmetry factor of 1/2. To obtain the correct vacuum polarizations, one makes

the replacement MW 7→MZ in eqs. (4.5)–(4.7) for the Z, and MW 7→ 0 for the photon.

Assembling these terms and carrying out the κ integrals, it follows that the vacuum

polarization for each species of boson satisfies

ΠAA(k2) =
β2

8π2

B̄′2

B̄

∫ 1

0
dx

{

2k2 + γ2M2
A

4

[

Λ2 +
Λ2

2

Λ2

Λ2 + Σ2
− Σ2 ln

(

1 +
Λ2

Σ2

)]

+(xk2 + γM2
A)2

[

−1

2

Λ2

Λ2 + Σ2
+

1

2
ln

(

1 +
Λ2

Σ2

)]

−Ω

2
(k2 + ǫM2

A)

[

Λ2

2
−
M2
χ

2
ln

(

1 +
Λ2

M2
χ

)

]}

(4.9)

4.2 Effective Lagrangians for the vacuum polarization

Eq. (4.9) is a complicated expression from which it is difficult to extract the important

qualitative features of the oblique corrections. To do better, one can analyze ΠAA(k2) in

terms of an effective Lagrangian which would give rise to the same vacuum polarization.

4.2.1 Low energy, massive vector bosons.

Consider first the limit |q2| ≪ M2
W . For each species of massive vector boson A one can

make the expansions

Λ2

Λ2 + Σ2
=

1

σ2
+

1

σ2

∞
∑

n=1

(−1)n
[

x(1 − x)

σ2

k2

Λ2

]n

(4.10)

and

ln

(

1 +
Λ2

Σ2

)

= ln
σ2

σ2 − 1
+

∞
∑

m=1

∞
∑

n=1

(−1)m(n+1)+1

mσ2m

[

x(1 − x)k2

(1 − x)M2
A + xM2

χ

]mn

(4.11)

where we have defined σ2 by the rule

σ2 ≡ 1 + (1 − x)
M2
A

Λ2
+ x

M2
χ

Λ2
. (4.12)
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In particular, σ2 ≈ 1 whenever the scale of the cutoff, Λ, is much larger than the elec-

troweak scale MEW ∼ MA. Eq. (4.10) is an expansion in powers of k2/Λ2. In an effective

field theory, these contributions would come from a tower of non-renormalizable operators

suppressed by the cutoff scale, although one should remember that whenever these oper-

ators become important the bridge corrections discussed in B will also make a significant

contribution. On the other hand, eq. (4.11) amounts to an expansion in powers of k2/M2
A.10

These contributions would come from non-renormalizable operators suppressed only by the

electroweak scale. As we increase the momentum which is transferred through the gauge

boson propagator from zero, we expect to see corrections enter at the scale |k2| ∼ M2
A,

followed by another set of corrections at the cutoff.

Collecting these expressions one finds an expansion for ΠAA(k2), which yields

ΠAA(k2) =
g2

M2

[

M2
Aα0 + α2k

2 + α4k
4 + O

(

k2

M2
EW

)]

, (|k2| ≪M2
EW) (4.13)

where g is an effective dimensionless coupling constant defined by

g2 ≡ 1

8π2

B̄′2

B̄
, (4.14)

the mass scale M is M ≡ β−1, as before, and the coefficients αi, for i ∈ {0, 2, 4}, satisfy

α0 ≡ Λ2

4

(

γ2

2
− Ωǫ

)

+
γ2M2

A

16

[

6 ln
Λ2

M2
A

− 1 + O

(

M2
χ

M2
EW

)]

, (4.15)

α2 ≡ Λ2

4
(1 − Ω) +

M2
A

144

[

6[γ(12 − γ) − 6] ln
Λ2

M2
A

+ γ(36 − 5γ) − 18 + O

(

M2
χ

M2
EW

)]

, (4.16)

α4 ≡ 1

12
ln

Λ2

M2
A

+
5

72
+ O

(

M2
χ

M2
EW

)

. (4.17)

We could equally well have obtained this vacuum polarization if we had started from an

action of the form

S =
1

2

∫

d4x

[

(

1 − g2

M2
α2

)

ϕ∂2ϕ−M2
A

(

1 − g2

M2
α0

)

ϕ2 − g2

M2
α4ϕ∂

4ϕ

+corrections at M2
EW

]

, (4.18)

and calculated only to tree level, where ϕ represents any polarization of the vector boson

of species A, and the corrections at M2
EW take the form of a tower of non-renormalizable

terms suppressed by powers of MEW. Note the unsuppressed non-renormalizable term of

the form ϕ∂4ϕ, which is symptomatic of the fact that our starting Lagrangian, eq. (2.2),

did not describe a renormalizable quantum field theory.

10The series expansion in eq. (4.11) can be integrated term-by-term in x, producing an expansion in

powers of k2/M2

A with coefficients which involve hypergeometric functions of M2

χ/M2

A. When expanded

in powers of this ratio it is possible that logarithms of M2

χ/M2

A are generated, although suppressed by a

positive power of M2

χ/M2

A. It follows that the scale at which this tower of non-renormalizable operators

becomes significant genuinely is around the electroweak scale, |k2| ∼ M2

A.
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A good deal of information can be obtained from inspection of the effective action (4.18).

The relevant operators are the kinetic term ϕ∂2ϕ and the mass term ϕ2, which both re-

ceive corrections quadratic in the cutoff Λ. The mass is prevented from receiving corrections

which scale faster than Λ because gauge invariance is restored when MA → 0, and in this

limit the mass must not receive quantum corrections so that the Ward identity is preserved.

Indeed, it follows from eq. (4.13) that the T parameter can be written

αT =
g2

M2
(α0,Z − α0,W ) , (4.19)

and therefore that all quadratic divergences cancel in this quantity. It is clear from eq. (4.18)

that this cancellation is a direct consequence of the restoration of gauge invariance in the

limit MZ ,MW → 0.

4.2.2 Low energy, massless vector bosons

A similar procedure can be applied to find an effective Lagrangian for the photon self-

energy in the low-energy limit. The vacuum polarization is obtained from eq. (4.9) after

the replacement MW 7→ 0, after which the expansions (4.10)–(4.11) continue to apply, with

σ2 substituted by the alternative combination τ2, which satisfies

τ2 ≡ 1 + x
M2
χ

Λ2
. (4.20)

However, the roles of these non-renormalizable operators are subtly changed. Eq. (4.10) can

still be interpreted as a tower of corrections at the cutoff (which we again caution will be

accompanied by significant bridge contributions), but eq. (4.11) now represents corrections

at the scale of the dark energy mass, |k2| ∼ M2
χ. If we discard these corrections, it

follows that the effective Lagrangian we obtain will be valid only in the limit |k2| ≪
M2
χ. Fortunately, for finite Mχ this is sufficient for the purpose of obtaining the oblique

parameter S.

In this limit, one finds

Πγγ(k
2) =

g2

M2

[

δ2k
2 + δ4k

4 + O

(

k2

M2
χ

)]

, (|k2| ≪M2
χ) (4.21)

where the coefficients δ2 and δ4 satisfy

δ2 ≡ Λ2

4
(1 − Ω) + O(M2

χ), (4.22)

δ4 ≡ −1

6
+ O

(

M2
χ

Λ2

)

. (4.23)

Within its range of validity, this expansion can be interpreted in terms of the effective

Lagrangian (4.18). In particular, note that (as expected), no mass term is generated owing

to gauge invariance.

– 18 –



J
H
E
P
0
9
(
2
0
0
9
)
1
2
8

4.2.3 Energies near the resonance, massive vector bosons

To obtain S, we require information about ΠAA(k2) in the region where it approaches the

resonance at k2 = −M2
A. This can be studied by setting k2 = −M2

A + q2, and making an

expansion in powers of q2/M2
A. When expanded in this way, it is less straightforward to

interpret Π(k2) as an effective Lagrangian. However, some of our understanding concerning

the meaning of each term can be carried over.

Eqs. (4.10)–(4.11), giving expansions in terms of non-renormalizable operators, con-

tinue to apply with the replacement σ2 7→ σ̂2, where for each species A of massive vector

boson we have defined

σ̂2 ≡ 1 + (1 − x)2
M2
A

Λ2
+ x

M2
χ

Λ2
. (4.24)

We find

ΠAA(k2) =
g2

M2

[

M2
Aα̂0 + α̂2q

2 + α̂4q
2 + O

(

q2

M2
EW

)]

, (|k2| ∼M2
A) (4.25)

where the coefficients α̂i, for i ∈ {0, 2, 4}, satisfy

α̂0 ≡ Λ2

4

(

γ2

2
− Ω(ǫ− 1) − 1

)

+
M2
A

36

(

3[γ(5γ − 6) + 4] ln
Λ2

M2
A

+ 4[γ(4γ − 9) + 5] + O

(

M2
χ

M2
EW

))

, (4.26)

α̂2 ≡ Λ2

4
(1 − Ω) +

M2
A

72

(

3[γ(11γ − 16) + 4] ln
Λ2

M2
A

+ γ(67γ − 128) + 59 + O

(

M2
χ

M2
EW

))

,

(4.27)

α̂4 ≡ 1

12
ln

Λ2

M2
A

+
11

36
+ O

(

M2
χ

M2
EW

)

. (4.28)

It is now possible to give expressions for the remaining oblique parameters S, V and

W in terms of these effective quantities

αS

4s2Wc
2
W

=
g2

M2
(α0,Z − α̂0,Z − δ2) , (4.29)

αV =
g2

M2
(α̂2,Z + α̂0,Z − α0,Z) , (4.30)

αW =
g2

M2
(α̂2,Z + α̂0,W − α0,W ) , (4.31)

where we have dropped contributions from the non-renormalizable operator ϕ∂4ϕ since

these never lead to quadratic divergences. It is now clear from inspection of eqs. (4.29)–

(4.31) together with eqs. (4.15)–(4.17), (4.22)–(4.23) and (4.27)–(4.28) that all quadratic

divergences cancel in S, T , U V and W .
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5 Discussion

5.1 When are quantum corrections screened?

This cancellation is not an accident, but is partly a consequence of gauge invariance

and partly depends on the structure of gauge boson-lepton couplings within the Stan-

dard Model.

The available phase space which sets the size of the loop correction is determined by the

couplings {B,BH} and the mass of the boson, which is an infra-red effect. Most of the phase

space volume will be concentrated near the ultra-violet region, in spherical shells of large

Euclidean four-momentum. Coupling to these shells corresponds to a process where a prop-

agating intermediate vector boson radiates into a hard chameleon and boson pair. From

the point of view of this pair, the original vector boson behaves as if it were massless, and

the effect of mass splittings between W±, Z and γ becomes irrelevant. Therefore, because

gauge invariance requires that W±, Z and γ couple to the dark energy in the same way at

zero mass, we expect no difference in the manner in which any of these gauge bosons radiate

into momentum shells at Euclidean four-momenta which are large compared with MZ .

Assuming our choice of input parameters, this is sufficient to screen all O(1) effects in

contact interactions of a single electroweak gauge boson with exactly two fermions — which

is the only type of interaction which occurs in the electroweak sector, excluding interactions

with the Higgs. The input parameters were chosen to be the Z mass, MZ , together with

the fine structure constant, α, and the Fermi constant, GF , which measure the strength

of the electromagnetic and charged-current interactions at zero momentum, respectively.

Operationally, both α and GF measure a combination of some dimensionless coupling

constants and a propagator at zero momentum: for α this is the photon propagator, whereas

GF measures the W propagator. The oblique corrections can be of two kinds. Firstly,

for processes involving a Z particle, the strength of the neutral-current coupling is not

measured by GF but can be obtained from it by a shift measured at zero momentum.

This is the purpose of the T parameter. Secondly, a wavefunction renormalization of gauge

boson lines may be necessary, which depends on properties of the propagator near Euclidean

momentum of order MZ . The difference between the wavefunction renormalization of the

Z and W propagators evaluated at zero momentum and at momenta near MZ is measured

by V and W , respectively. Finally, S compares the zero-momentum Z and γ propagators

and therefore plays the same role for the photon as T does for the Z, while U measures

the difference between the W± and Z propagators at zero momentum.

All these shifts depend on a comparison of the phase space available to two different

gauge bosons, or between the same gauge boson at different momenta. As we have seen,

gauge invariance guarantees that the phase space available to all gauge bosons is the same

at large Euclidean four-momentum, so differences can only arise from the interior shells

of momentum space where the mass splitting between the electroweak gauge bosons can

no longer be neglected. Differences in this region can not lead to O(1) effects if the mass

scales {M , MH} associated with dark energy are much larger than the electroweak scale.

It follows that large effects from radiative corrections are screened. However, this depends

essentially on the fact that
√
α and

√
GF include one gauge boson line, and all other

processes subsequently involve vertices which also include only a single ingoing or outgoing

gauge boson.
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Figure 4. Current collider constraints on the coupling scales M and MH , associated with dark

energy interactions with the electroweak gauge and Higgs sectors, respectively. The interior light

green region is compatible with current precision electroweak data at 1σ, and extends indefinitely

to large M and MH . Also shown is the 2σ region in darker green.

The calculation of the oblique corrections in the previous sections was done only to one

loop. In principle loop corrections of any order could contribute O(1) corrections but we

expect that the screening of oblique scalar field corrections to the gauge boson propagators

occurs at all orders.

For a dark energy species which selects its mass via a chameleon mechanism we depict

the current collider constraints on the mass scales M , MH in figure 4. These can loosely be

summarized as M , MH & 1 TeV, which is stronger than the constraint which follows from

the decay width of the Z into visible particles. Clearly, neither constraint is competitive

with present bounds from optical or axion-search observations [12, 43]. In figure 5 we show

the same constraints as a function of the dark energy mass, Mχ, and its interaction scale

M , without assuming that Mχ is determined by some chameleon-type mechanism.

5.2 Future prospects

Any future linear collider will measure electroweak precision observables with remarkable

accuracy [44], but if weak couplings imply it cannot produce dark energy particles directly

then the most important discovery mode will come from sensitivity to radiative corrections

at high energy. For any electroweak processes sensitive to the diverging phase space of

dark energy states at large Euclidean four-momentum, the discovery reach of the ILC
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Figure 5. Current constraints on the mass, Mχ, of a dark energy particle whose interaction with

ordinary matter is characterized by a scale M & MEW. The interior light green region is compatible

with present data at 1σ, whereas the 2σ region is shown in darker green. Compare with figure 8 of

ref. [42].

would not be limited by the smallness of the coupling unless new physics operating at

lower energies could quench the contribution of dark energy loops. An example of such

new physics could be the appearance of a chameleon superpartner at some energy MSUSY,

if MSUSY ≪M , where M is the characteristic mass scale with which dark energy couples to

the gauge sector. On the other hand, if dark energy radiative corrections are screened, then

contributions to electroweak precision observables fall with the mass scale of the coupling

like (MEW/M)2 lnM2/M2
EW. The most stringent constraint on M currently derives from

the polarization of light from astrophysical sources, which was studied in refs. [15, 45] and

leads to the lower limit M & 109 GeV. It is unlikely that such small corrections could ever

be observed at the ILC.

Since detection of electroweakly interacting dark energy at e+e− colliders will be chal-

lenging, it is natural to consider what can be achieved at hadron-hadron colliders such as the

LHC or the Tevatron. Although W±s and Zs are produced by such colliders, the problem

of backgrounds and the difficulty of kinematical reconstruction of the final state at a hadron

collider mean that constraints from pure electroweak processes are likely to be inferior to

those from a future linear collider. However, hadron colliders are sensitive to other chan-

nels in which new physics can appear. One particularly interesting window on new physics

may be provided by rare decays of B mesons, which are bound states of a bottom quark b
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} φ

} K0

B0

Wb̄

d

s̄

s

s̄

d

Figure 6. Penguin diagram contribution to the decay B0 → K0φ.

with some other quark q in the combinations bq̄ or b̄q. Such mesons can decay via flavour-

changing neutral currents which are forbidden at tree-level, but give rise to decays such as

B0 → K0φ (where B0 is the neutral B meson composed of an anti-bottom/down pair b̄d)

when loop diagrams such as the so-called “penguin” of figure 6 are included. Rare processes

of this type give a comparatively clean signal of new physics. Unfortunately, it does not

appear likely that conformally coupled dark energy of the kind studied in this paper could

manifest itself in this way. At large Euclidean four-momentum, where the internal W± line

in figure 6 could be expected to receive sizeable dark energy modifications, the quarks to

which it couples are effectively massless and the loop is flavour-independent. When summed

over all quarks which can circulate in the loop, the unitarity of the Cabbibo-Kobayashi-

Maskawa matrix implies that this dominant flavour-independent contribution suffers an

exact cancellation: this is the so-called Glashow-Iliopoulos-Maiani mechanism. We can

estimate that this mechanism allows any dark energy contribution, coupling at a scale M ,

to contribute at most at relative order m2
t/M

2, where mt ≈ 175 GeV is the top mass.

Is there any way to avoid the screening of large radiative corrections? This can only

be done if at least one coupling constant measured in a low-energy interaction can appear

in a different context in some other process. Remarkably, the Standard Model does allow

for this possibility. If we assume a minimal Higgs sector, there are three- and four-body

interactions of the massive electroweak gauge bosons with physical Higgs quanta which are

described by the action

S = −
∫

d4x

(

21/4
√

GFH +GF
H2

√
2

)

(

2M2
WW

+aW−
a +M2

ZZ
aZa

)

, (5.1)

where H is the physical Higgs field. This must itself be subject to oblique corrections

which only involve the coupling BH . There is no reason to expect that the shifts necessary

to bring GF and the H and gauge boson lines to finite momenta will be independent of

the ultra-violet region of momentum space. However, these large effects are undetectable

until the interaction of the Higgs with at least one of the massive gauge bosons becomes

accessible to experiment. Even when this is possible, the details will depend sensitively on

the mechanism of electroweak symmetry breaking chosen by Nature. For this reason we

defer investigation of such processes, although we note that in the case of a minimal SU(2)

doublet it is possible to verify that one could perhaps expect an O(1) modification of the

Higgs production rate via weak boson fusion at the LHC.

The insensitivity of electroweak collider experiments to weakly coupled dark energy is
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frustrating given the inability of cosmological observations to place bounds on this region

of parameter space. Although the search for astrophysical constraints has been fruit-

ful [10, 15], it is difficult to imagine any astrophysical processes which would be sensitive

to energy densities of order (1012 GeV)4 or above which were attained only during the

very early universe. For example, one might have imagined that small perturbations im-

printed in the dark energy scalar during an epoch of primordial inflation would lead to

interesting effects in the late universe. Unfortunately, it appears that dark energy scalars

of chameleon-type generically roll rapidly to their potential minima during the first few

e-folds of inflation, where they remain for the duration of the accelerating era [5]. In the

minimum, the dark energy field is heavy and is not excited by the inflationary expansion.

For this reason, it does not function as an isocurvature field and cannot source evolu-

tion of the curvature perturbation, which might have led to interesting constraints from

the spectral index or non-gaussianity. Moreover, the curvature perturbation is screened

from possible non-perturbative effects because the chameleon vacuum expectation value is

fixed [46]. On the other hand, if the chameleon vev shifted appreciably after inflation, it

could potentially amplify the steep blue spectrum of perturbations imprinted on the U(1)

hypercharge field. If this amplification were too dramatic, it would lead to an unacceptable

collapse of hypercharge fluctuations into primordial black holes at the end of inflation, in

conflict with observation [47]. However, in practice the chameleon vev does not change

sufficiently for this to provide an interesting constraint.

6 Conclusions

In this paper, we have studied the prospects for collider physics to detect a scalar dark

energy species which couples conformally to Standard Model states which are charged under

the electroweak gauge group SU(2) × U(1). This is particularly interesting for proposals

incorporating a chameleon-type mechanism, in which the dark energy field may evade

stringent bounds on the presence of light scalar bosons by dynamically adjusting its mass

to be large in regions of high average density. Any such theory of dark energy must certainly

couple to the Standard Model, although it is not mandatory that the dark energy scalar

couples to electroweak states. However, if such couplings are present, then in view of the

theoretical and experimental cleanliness of electroweak physics in comparison with hadron

processes, one might expect that they would provide the most promising means of detection.

In the minimal Standard Model with Higgs sector consisting of only a single SU(2)

doublet, this expectation is wrong. Although coupling to a dark energy scalar in principle

allows for fractional shifts of O(1) in precision electroweak observables, we have shown

that in practice such large corrections are “screened,” in direct analogy with the screening

theorem which prevents similar corrections from heavy Higgs states. Screening occurs

because a majority of the dark energy corrections are absorbed in the input parameters

{α,GF ,MZ}, with only small splittings between the remaining observables which arise

from the infra-red region of momentum space. The structure of the Standard Model also

plays an important role, since all relevant vertices involve precisely two fermions and a

single gauge boson. On the other hand, if it is possible to observe Higgs processes at

the LHC then we would expect O(1) corrections to the Higgs production cross-section via

weak-boson fusion.
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Although we have carried our explicit calculations only to one loop, we expect that

screening of oblique corrections persists to all orders, any of which could contribute O(1)

effects as a matter of principle. This is important in establishing the consistency of dark

energy theories with existing collider experiments, but also implies that the dark energy

discovery potential of future e+e− colliders such as the proposed International Linear

Collider may be comparatively limited, unless the Higgs can be detected.

One might also attempt to probe dark energy couplings via hadron processes, for which

a promising observable might be the so-called flavour-changing neutral current which medi-

ate rare decays of B mesons. Unfortunately, for such reactions the unitarity of the Cabbibo-

Kobayashi-Maskawa matrix plays a role similar to that of gauge invariance in quenching

the contribution from shells of phase space at large Euclidean four-momentum, where a

significant effect could be expected. Other non-electroweak effects such as bremsstrahlung

also offer an apparently limited discovery potential.
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A Dark energy corrections to the Z width

In this appendix we discuss the possibility of enhancements to the observed decay width of

the neutral Z boson. Such enhancements arise via the process Z → χZ∗ → χψψ̄ through

which a propagating Z emits a dark energy particle χ and passes off-shell. Eventually the

off-shell Z decays to a fermion-antifermion pair Z∗ → ψψ̄, but if the weakly-interacting

χ escapes the detector unseen then this reaction is indistinguishable from the direct de-

cay Z → ψψ̄.

A.1 Direct decay

Let us first recapitulate the textbook calculation of direct decay [48]. This will allow us

to express the enhancement from dark energy emission as a fraction of the pure Standard

Model rate. We suppose that a Z particle decays into a fermion species whose quanta are

created and destroyed by operators associated with the Dirac fields ψ and ψ̄, according to

an interaction Lagrangian of the form
∫

d4x ψ̄γaZa(gLL+ gRR)ψ (A.1)

where the γa are matrices obeying the Dirac algebra {γa, γb} = 2ηab, gL and gR are

arbitrary left- (respectively, right-) handed couplings, and L and R are projections onto

the left- (respectively, right-) chirality halves of a spinor in Dirac’s representation,

L ≡ 1 + γ5

2
and R ≡ 1 − γ5

2
. (A.2)
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We use γ5 ≡ −iγ0γ1γ2γ3, which has unit square γ2
5 = 1 and commutes with all other

γ-matrices. The projection operators L and R obey L2 = L and R2 = R, together with the

orthogonality relation LR = RL = 0. We will also use the parity transformation operator

β = iγ0, obeying β2 = 1, in terms of which β(γa)†β = −γa and βγ5β = −γ5.

Unpolarized decay proceeds according to the diagram of figure 1(a). To obtain the

overall rate, one averages over the three polarizations of a massive spin-1 particle and sums

over the two spin states of each outgoing fermion. The differential decay rate per unit

volume of phase space, dv, available to the final state ψψ̄ pair corresponds to

dΓ

dv
= 2πδ

(

∑

k
)

∑

outgoing
spins

1

3

∑

ingoing
polarizations

|Mψψ̄ |2 (A.3)

where
∑

k schematically denotes the sum of all ingoing momenta minus all outgoing mo-

menta. The Feynman amplitude Mψψ̄ depends on the polarization of the initial Z, labelled

s, and its 3-momentum p, together with the spins of the final-state fermions, labelled σ1,2,

and their 3-momenta t1,2. It is defined by

[Mψψ̄]s,σ1σ2 ≡ − 1

(2π)3/2
[ūσ1(t1)γ

a(gLL+ gRR)vσ2(t2)]
esa(p)√
2EZ

. (A.4)

After performing the spin and polarization sums, yielding a trace over Dirac indices, this

corresponds to a differential decay rate which can be written

dΓ = (2π)4δ(p − t1 − t2)
d3t1

(2π)32E1

d3t2
(2π)32E2

1

6EZ

×
{

12gLgRM
2
ψ + (g2

L + g2
R)

(

4
(p · t1)(p · t2)

M2
Z

− 2t1 · t2
)}

(A.5)

where t1,2 = (E1,2, t1,2) and p = (EZ ,p) are 4-momenta corresponding to the out- and

in-going particles, respectively, and an infix dot ‘·’ denotes contraction in the Minkowski

metric. All external particles are taken to be on-shell, with 4-momentum conservation

enforced by δ(p − t1 − t2), and the outgoing fermions each have mass Mψ.

Conservation of 3-momentum is sufficient to determine one of the outgoing momenta.

Moreover, performing the calculation in the Z rest frame, symmetry requires that the

outgoing fermions have equal energies E1,2 = MZ/2. In consequence, we conclude that the

total rate of emission into a solid angle dΩ can be written

dΓ

dΩ
=

MZ

96π2

√

1 − 4
M2
ψ

M2
Z

{

6gLgR
M2
ψ

M2
Z

+ (g2
L + g2

R)

(

1 −
M2
ψ

M2
Z

)}

. (A.6)

A.2 Decay accompanied by dark energy emission

Now we return to the more complicated process where the decaying Z is first pushed off-shell

via emission of a single χ particle and subsequently decays into the observed fermion pair.

This corresponds to the process of figure 1(b). The ZZχ interaction vertex is determined

by (4.1), modified as discussed below eq. (4.8) to obtain the coupling to the Z boson.
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As above we label the decaying Z with momentum p and energy EZ , and the outgoing

fermions with momenta t1,2 and energies E1,2. The outgoing χ particle is taken to have

momentum q and energy Eχ. The total decay rate per unit of phase space available to the

particles in the final state is given by a formula equivalent to eq. (A.3), with the Feynman

amplitude Mψψ̄ replaced by a more complicated quantity Mχψψ̄ which satisfies

[Mχψψ̄]s,σ1σ2 ≡ − 1

(2π)3
B̄′M−1

r2 +M2
Z

[

ηab(−p · r − γM2
Z) + pbra

]

(

ηbc +
rbrc
M2
Z

)

× [ū(t1)γ
cGv(t2)]

esa(p)√
2EZ

1
√

2Eχ
. (A.7)

In order to avoid confusion with the parity inversion operator β ≡ iγ0 we have chosen the

chameleon coupling scale as M , which elsewhere in this paper has been been synonymous

with the coupling β = M−1. The off-shell interior Z carries 4-momentum r = p − q, and

G is the ‘coupling matrix,’

Gαβ ≡ [gLL+ gRR]αβ , (A.8)

where {α, β, . . .} label spinor indices. Summing over final-state spins and averaging over

all three initial-state polarizations, we find

dΓ = (2π)4δ(p − q − t1 − t2)
B̄′2M−2

(r2 +M2
Z)2

d3q

(2π)32Eχ

d3t1
(2π)32E1

d3t2
(2π)32E2

1

6EZ
M′

χψψ̄, (A.9)

where M′
χψψ̄

satisfies

M′
χψψ̄ ≡ P acP

d
f

(

ηad +
papd
M2
Z

)

tr
{

γcG(−1)(i/t2 +Mψ)β(G)†(γf )†β(−i/t1 +Mψ)
}

.(A.10)

We are adopting the usual Feynman convention in which /Z ≡ γaZa for any 4-vector Z;

and P ac is defined by

P ac ≡
{

ηab(−p · r − γM2
Z) + pbra

}

(

ηbc +
rbrc
M2
Z

)

. (A.11)

The trace over Dirac indices can be evaluated by standard methods. It yields

trace = ηcf
{

4gLgRM
2
ψ − 2(g2

L + g2
R)t1 · t2

}

+ 2(g2
L + g2

R)(tc2t
f
1 + tf2t

c
1), (A.12)

plus a term antisymmetric under the exchange c↔ f , which we omit because it disappears

after insertion in eq. (A.10). This trace depends only on the final Zψψ̄ vertex and is

common between the direct and accompanied decays. Nevertheless, it will not cancel in a

ratio between the two, because it depends non-trivially on the Lorentz index structure by

which it couples to the rest of the diagram. This structure receives significant modifications

when the Z decay is accompanied by dark energy emission.
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To proceed, we must contract Lorentz indices. We find
(

ηad +
papd
M2
Z

)

P acP
d
f = pcpf (r

2 + γ2M2
Z) + ηcf (p · r + γM2

Z)2 (A.13)

+rcrf

[

(

γ − p · r
M2
Z

)(

1 +
r2

M2
Z

)

(p · r + γM2
Z)

+
1

M2
Z

(p · r + γM2
Z)2 +

(

p · r
M2
Z

)2

(r2 + γ2M)Z2)

]

+(rcpf + pcrf )

[

p · r
M2
Z

(r2+γ2M2
Z)−

(

1+
r2

M2
Z

)

(p · r + γM2
Z)

]

This can be contracted with eq. (A.12) for the Dirac trace, yielding a final expression for

M′
χψψ̄

. For convenience of expression, let us write M′
χψψ̄

= A + B. We find

A
4M2

ψgLgR − 2(g2
L + g2

R)t1 · t2
≡ −M2

Z(r2 + γ2M2
Z) + 4(p · r + γM2

Z)2 (A.14)

+r2

[

(

γ − p · r
M2
Z

)(

1 +
r2

M2
Z

)

(p · r + γM2
Z)

+
(p · r + γM2

Z)2

M2
Z

+

(

p · r
M2
Z

)2

(r2 + γ2M2
Z)

]

+2(p · r)
[

p · r
M2
Z

(r2 + γ2M2
Z) −

(

1 +
r2

M2
Z

)

(p · r + γM2
Z)

]

and

B
2(g2

L + g2
R)

≡ 2(p · t1)(p · t2)(r2 + γ2M2
Z) + 2(t1 · t2)(p · r + γM2

Z)2

+2(r · t1)(r · t2)
[

(

γ − p · r
M2
Z

)(

1 +
r2

M2
Z

)

(p · r + γM2
Z)

+
(p · r + γM2

Z)2

M2
Z

+

(

p · r
M2
Z

)2

(r2 + γ2M2
Z)

]

+2[(p · t1)(r · t2) + (p · t2)(r · t1)]

×
[

p · r
M2
Z

(r2 + γ2M2
Z) −

(

1 +
r2

M2
Z

)

(p · r + γM2
Z)

]

(A.15)

Kinematics. As before, 3-momentum conservation is sufficient to determine the momen-

tum of one outgoing particle, which we choose to be t2 without loss of generality. Energy

conservation determines one further scalar coordinate on phase space, which we choose to

be E1. The undetermined part of the 3-body phase space is parametrized by the outgoing

dark energy momentum q and a pair of polar and azimuthal angles (θ, φ) which specify

the orientation of t1 relative to q.

Let us obtain E1 as a function of the unconstrained parameters. We work in the Z rest

frame. Energy conservation requires Eχ + E1 + E2 = MZ , and 3-momentum conservation
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fixes t2 = −t1 − q. Therefore we conclude that E1 must solve the implicit equation

E2
2 = E2

1 + E2
χ −M2

χ + 2
√

E2
χ −M2

χ

√

E2
1 −M2

ψ cos θ. (A.16)

To obtain an explicit equation, eq. (A.16) can be squared and the resulting relation simpli-

fied. However, in doing so we introduce an extra solution for which eq. (A.16) holds only

after the exchange cos θ 7→ − cos θ. The solution is spurious and should be eliminated. In

practice we will find that the two possible solutions exchange roles at θ = π/2, but that

the matching is smooth. Following this procedure, the possible solutions must solve the

quadratic equation

E2
1

[

4 cos2 θ(E2
χ −M2

χ) − 4(MZ −Eχ)
2
]

+ 4E1(MZ − Eχ)(M
2
Z +M2

χ − 2MZEχ)

= (M2
Z +M2

χ − 2MZEχ)
2 + 4M2

ψ cos2 θ(E2
χ −M2

χ). (A.17)

This can be achieved by substituting the correct solution of eq. (A.17) in eqs. (A.9)–(A.10).

However, one must also account for a Jacobian factor associated with transformation of

the δ-function enforcing energy conservation. To obtain this, define

E ≡ EZ −Eχ − E1 − E2(Eχ, E1, θ), (A.18)

in terms of which energy conservation requires δ(E). We can now use a change of variables

to find

δ(E) =
δ[E1 − E1(Eχ, θ)]

|∂E/∂E1|
, (A.19)

where E1(Eχ, θ) is a solution of eq. (A.17). The Jacobian ∂E/∂E1 can be determined using

eq. (A.16), yielding

∣

∣

∣

∣

∂E
∂E1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

1 + E1

1 + (E2
χ −M2

χ)1/2(E2
1 −M2

ψ)−1/2 cos θ

E2

∣

∣

∣

∣

∣

, (A.20)

where E2 is to be determined by eq. (A.16). In sum, the total unpolarized decay rate

now satisfies

dΓ

dΩ1
=

B̄′2M−2

192π2(2π)3

√

E2
1 −M2

ψ

(r2 +M2
Z)2

d3q

EχE2MZ

∣

∣

∣

∣

∂E
∂E1

∣

∣

∣

∣

−1

M′
χψψ̄, (A.21)

where dΩ1 is the element of solid angle associated with t1.

To proceed it is convenient to introduce dimensionless small quantities x and y, given

in eqs. (3.2)–(3.3), which determine Mχ and Mψ in terms of MZ ,

Mψ =
√
xMZ and Mχ =

√
yMZ . (A.22)

Also, we can agree to measure energies in units of MZ , introducing quantities Êχ and Ê1,2

which satisfy eq. (3.4). Likewise, vectors such as r and q can be rescaled according to

eq. (3.5), giving dimensionless vectors r̂ and q̂. In terms of these dimensionless quantities,

eq. (A.6) giving the rate of direct decay reads

dΓ(Z → ψψ̄)

dΩ
=

MZ

96π2
Mψψ̄ , (A.23)
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fermion species massless neutrino 10−3 eV neutrino 511 keV electron 5GeV electron 40GeV electron

Iχψψ̄ 0.22 0.22 0.22 0.21 0.007

Table 1. Enhancement factors for Z decay accompanied by dark energy emission, to be interpreted

in conjunction with eqs. (3.10) and (A.26). As the fermion mass increases, the phase space available

to any decay products diminishes until it is forbidden altogether at the kinematic threshold Mψ =

MZ/2. The enhancement for massless or light particles is very nearly independent of their identity.

where Mψψ̄ satisfies eq. (3.9) with the fermion species f taken to be ψ. The Jacobian

|∂E/∂E1| satisfies eq. (3.8), and we will denote it J in what follows. Moreover, M′
χψψ̄

has

mass dimension [M6], so we can introduce an unprimed quantity Mχψψ̄ which depends

only on x, y, the hatted vectors and other dimensionless quantities, and is defined by

M′
χψψ̄ ≡M6

ZMχψψ̄. (A.24)

After these replacements, the rate of unpolarized decay accompanied by dark energy emis-

sion satisfies

dΓ(Z → χψψ̄)

dΩ1
=

B̄′2M−2

192π2(2π)3
M3
Z dÊχ dΩχ

√

Ê2
1 − x2

√

Ê2
χ − y2

J(1 − Êχ − Ê1)(1 + r̂2)2
Mχψψ̄. (A.25)

Taking the ratio of eqs. (A.25) and (A.23) we finally obtain our advertised relation,

eq. (3.1), which describes the enhancement due to dark energy emission as a fraction of

the bare Standard Model rate. As in eq. (3.10), it is convenient to aggregate that part of

the enhancement in eq. (A.25) which is independent of the chameleon coupling M into a

dimensionless integral Iχψψ̄. This will depend on the mass and couplings of the fermion

species ψ, together with the mass of the dark energy scalar χ. In particular,

Iχψψ̄(Mψ,Mχ, gL, gR) ≡
∫

dÊχ dΩχ

√

Ê2
1 − x2

√

Ê2
χ − y2

J(1 − Êχ − Ê1)(1 + r̂2)2

Mχψψ̄

Mψψ̄

. (A.26)

We give representative values for Iχψψ̄ in table 1.

B Bridges and daisies: dark-energy corrections to all orders

Even in the effective field theory interpretation, where loops which are purely internal to

the dark energy sector are ignored, eq. (2.2) — together with the assumption that all matter

fields couple conformally — entails a great many possible corrections to Standard Model

processes. In this appendix, we argue that to an acceptable approximation a majority of

these corrections are subdominant; in this approximation, the leading dark energy effect

comes from the one-loop oblique correction. This assumption played an essential role in

determining the dark energy corrections in section 3.

A useful example to keep in mind is the case of the graviton, which also couples

conformally to matter (and indeed all Standard Model states) with a universal coupling

function,
√

det(ηab + hab), where ηab is the background metric and hab is the spin-2 graviton
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(a) (b)

(c)

Figure 7. More complicated bridge-class diagrams. In addition to the simple bridge shown in

figure 2(c), one can use high-order vertices between two gauge bosons and an arbitrary number

of dark energy quanta to “chain” any number of bridges together, as shown in (a). In (b), the

component lines of a particular bridge are themselves joined together by virtual quanta of other

species. (These could include dark energy particles, because the loops formed by such “joined

bridges” would not already be included in the effective dark energy sector.) In (c), bridge diagrams

are nested within each other to form so-called rainbow diagrams.

field. This non-linear coupling leads to a network of gravitational bridges, daisies and

oblique corrections, quite analogous to figure 2, which also dress Standard Model processes.

In the case of gravitons these have very little impact on reactions taking place at collider

energies; in comparison, the structure of the dark energy interactions in eq. (2.2) allow a

small number of diagrams to make an O(1) contribution. Nevertheless, many similarities

exist between graviton and dark energy phenomenology.

Together with the simple daisy and bridge classes introduced in figure 2, one can

contemplate more complicated corrections. Bridges can be chained together in arbitrary

combinations, as shown in figure 7(a), or the component lines within a given bridge can

themselves be joined together by other particles, as in figure 7(b). Alternatively, bridges can

be nested within each other to create rainbows — see figure 7(c). In principle, a hierarchy

of resummations (somewhat similar to the Balitsky hierarchy in QCD) is necessary to

accommodate all these types of activity.

B.1 Daisy diagrams

Let us first consider the effect of daisies which dress bare Standard Model vertices. These

are always momentum-independent and merely constitute a renormalization of whichever

coupling constant sets the strength of the interaction at the vertex. For this reason they

are relatively straightforward to deal with, and in the simplest situation we shall be able

to resum their effect to all orders. If the daisies vary between different species of fermion,

then the result would be an apparent species-dependent Fermi constant, GF . To prevent

this occurring the fermion coupling function must be universal, which will be the case for

conformal couplings. In what follows, we assume this to be the case.

– 31 –



J
H
E
P
0
9
(
2
0
0
9
)
1
2
8

Consider eq. (2.2) and expand the coupling functions B(x) and BH(x) according to

B(βχ) ≡
∞
∑

n=0

1

n!
B̄nβ

n(δχ)n (B.1)

BH(βχ) ≡
∞
∑

n=0

1

n!
B̄H,nβ

n
H(δχ)n, (B.2)

where χ = χ̄ + δχ, given that χ̄ is the expectation value of the dark energy scalar in the

vacuum, and B̄n (B̄H,n) are the Taylor coefficients of B (BH) evaluated in this vacuum.

We assume that B̄0 = B̄H,0 = 1 and introduce a quantity γn, defined by

γn ≡ B̄H,nβ
n
H

B̄nβn
. (B.3)

In terms of B̄n and γn, the nth order interaction vertex takes the form

Sn =

∫

d4k1

(2π)4
d4k2

(2π)4
d4p1

(2π)4
· · · d4pn

(2π)4
(2π)4δ



k1 + k2 +
∑

j

pj





B̄nβ
n

n!
W+
a (k1)W

−
b (k2)δχ(p1) · · · δχ(pn)[η

ab(k1 · k2 − γnM
2
W ) − kb1k

a
2 ]. (B.4)

As an example, we will compute the simplest class of daisies which contribute to the interior

of the W± propagator. The calculation of daisies which dress vertices with other species

of fermion — or for the other gauge bosons — proceeds analogously. One finds that the

vacuum polarization with momentum transfer q, which arises from the daisy with n petals,

can be written

Πn
ab ⊇ −B̄2nβ

2n (n − 1)!!

(2n)!

{∫

2π2κ3 dκ

(2π)4
1

κ2 +M2
χ

}n

[ηab(q
2 + γnM

2
W ) − qaqb], (B.5)

where (n− 1)!! ≡ (n− 1)(n− 3) · · · 1 is the so-called “double factorial.” In the special case

of an exponential coupling, where B̄n = 1 for all n, and assuming that γn can be replaced

by a constant γ, then it follows that all orders of daisies can be resummed to give

Πab ⊇ −[ηab(q
2 + γM2

W ) − qaqb]







−1 + F





·
1/4, 3/4

∣

∣

∣

∣

∣

(βΛ)4

215π4

[

1 −
M2
χ

Λ2
ln

Λ2

M2
χ

]2




+
(βΛ)2

32π2

(

1 −
M2
χ

Λ2
ln

Λ2

M2
χ

)

F





1

3/4, 5/4, 3/2

∣

∣

∣

(βΛ)4

215π4

[

1 −
M2
χ

Λ2
ln

Λ2

M2
χ

]2










(B.6)

where F (a; b|z) is the generalized hypergeometric function. For Λ . β−1 and Mχ ≪ Λ this

resummation is dominated by its one-loop term. There will be extra terms in addition to

eq. (B.6) which arise from interference between daisy diagrams and bridge diagrams (to be

discussed in the next section). Although these may change the details of some numerical

coefficients, they will not alter the momentum-independent character of the corrections.
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Eqs. (B.5)–(B.6) exhibit the general features which will recur in all diagrams we con-

sider in this appendix. A diagram with n dark energy lines can contribute at leading order

in powers of βΛ, with this contribution coming from a region of phase space where all dark

energy lines are carrying momenta of order Λ. This would seem to suggest that diagrams

containing an arbitrary number of lines need to be accounted for in order to make reliable

predictions. However, each line is also accompanied by a phase-space factor of 1/16π2 (plus

the combinatorical factor (n − 1)!!/(2n)!) which leads to suppression of high-loop terms,

so that counting powers of βΛ alone does not give a proper accounting of the relative

magnitude of adjacent terms in the loop expansion.

B.2 Bridge diagrams

Bridge diagrams are more complicated to handle. We proceed in two steps, first arguing

that a similar phase-space suppression means that only the one-loop bridge need be con-

sidered, and not multi-loop or rainbow bridges. In a second step, we argue that chains

of bridges can be ignored because they make a contribution at leading order in powers

of βΛ which is precisely momentum-independent. A contribution of this type can be ab-

sorbed into coupling constants and becomes unobservable. The one-loop bridge is itself

momentum-independent at leading order in powers of βΛ, so that the only contributions

at this order which are not suppressed by a phase space factor of order ∼ 100 are the oblique

corrections considered in section 3. It will transpire that we expect corrections to the purely

oblique analysis of sections 3–5 to occur at a relative order of roughly 1/8π2 ≈ 0.013 or

better. We believe this is an acceptable precision at which to predict what can be observed

at present and future particle colliders. It is again important that there is a universal

fermion coupling function, in order that the effective Fermi constant GF does not become

species-dependent.

First consider a multi-loop contribution to the vacuum polarization of any SU(2) gauge

boson. At momentum transfer q, a calculation similar to those presented in section 4

establishes that this can be represented in the form

Πn
ab ⊇

B̄2
nβ

2n

B̄1n!
(−i)n

∫

d4ℓ

(2π)4
d4r1
(2π)4

· · · d4rn−1

(2π)4
(B.7)

× Pab(ℓ, q)

ℓ2 +M2
W − iǫ

1

r21 +M2
χ − iǫ

· · · 1

r2n−1 +M2
χ − iǫ

1

R2 +M2
χ − iǫ

,

where R = q+ ℓ+
∑n−1

j=1 rj , ℓ is the momentum carried by the exchanged gauge boson, and

Pab(ℓ, q) satisfies

Pab ≡ ηab(ℓ · q − γnM
2
W )2 − (ℓaqb + ℓbqa)(ℓ · q − γnM

2
W ) + ℓaℓb(q

2 + γ2
nM

2
W ). (B.8)

Eq. (B.7) is suppressed by 2n powers of the coupling β, but each scalar integral can con-

tribute a power of Λ2. Since Pab ∼ ℓ2, the ℓ integration can contribute terms of order Λ4.

This would seem to imply that terms of order Λ2(βΛ)2n could be present in the answer,

but the correct conclusion depends on the relative magnitude of R2. Unlike the daisy di-

agrams or one-loop bridges, there can be some regions of phase space where ℓ ∼ rj ∼ Λ
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and |ℓ+
∑n−1

j=1 rj| ∼ 0, so that R ∼ q. However, if the region of phase space in which this

finely-tuned cancellation occurs shrinks with increasing cutoff faster than Λ2 then we can

estimate the leading contribution by setting R ∼ Λ in eq. (B.7). In practice, the enhanced

region of phase space is negligibly small.

The n-loop bridge. To estimate the contribution of the n-loop bridge, we set R ∼ nΛ

and replace each factor such as d4rj/(2π)4 by Λ2/8π2. This choice for R is tantamount to

assuming that the rj and ℓ are randomly oriented, so that their cross terms approximately

average to zero. This is likely to be a good approximation for large n but may fail for

n ∼ O(1), so we will demonstrate explicitly that this procedure gives the correct answer for

the 2-loop bridge. We consider this to be reasonable evidence that our estimate is reliable

for all n. Proceeding in this way, it follows that the n-loop bridge makes a contribution to

the vacuum polarization which is roughly equal to

Πn
ab ⊇

1

4
ηab(2q

2 + γ2
nM

2
W )

B̄2
n(βΛ)2n

B̄1n · n!

(

1

8π2

)n

. (B.9)

For the special case of an exponential coupling — for which B̄n = 1 for all n — this can

be resummed to give

Πab ⊇
1

4
ηab(2q

2 + γ2M2
W )

{

−γE + Ei(
β2Λ2

8π2
) − ln

β2Λ2

8π2

}

, (B.10)

where γE ≈ 0.577 is the Euler-Mascheroni constant and Ei(z) is the exponential integral.

As in the case of the daisy diagrams this is dominated by its one-loop contribution, with

the contribution of higher loops being suppressed by the phase-space factor 1/8π2.

Two-loop bridge. In the special case of the two-loop bridge, eq. (B.7) can be evaluated

by the method of Feynman parameters, as in section 4, with the result that

Π
(2)
ab =

B̄2
2β

4

B̄

(

1

8π2

)2 ∫ 1

0
dxdy dz δ(1 − x− y − z)

×
∫ Λ

0
ℓ3 dℓ

∫ Λ

0
r3 dr

1
4ℓ

2(2q2 + γ2
2M

2
W ) + (Xq2 + γ2M

2
W )2

Γ3
,

where Γ is defined by

Γ ≡ (1 − x)r2 +Wℓ2 +XY q2 + xM2
W + (1 − x)M2

χ, (B.11)

and the three quantities W , X and Y satisfy

W ≡ (1 − x)(1 − y) − z2

1 − x
, (B.12)

X ≡ z(1 − z)

(1 − x)(1 − y) − z2
, (B.13)

Y ≡ (1 − x)(1 − y) − z2 + z(1 − z)

1 − x
. (B.14)
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k

{

r

r + q

(a) k

{

q

q + k

r

r + k

s

s+ k

t

t+ k

(b)

Figure 8. Bridge diagrams. In (a), 2 → 2′ fermion scattering is dressed by a single dark energy

bridge, in which a single dark energy particle is emitted or absorbed at the scattering vertices. In

(b), a chain of bridges is exchanged. In principle, more complicated configurations exist in which

the bridge is itself built out of rainbows of sub-bridges. We neglect these, since we anticipate that

they will be suppressed by extra powers of the phase-space factor 1/8π2.

Performing the ℓ and r integrals and keeping only the leading term in powers of βΛ, this

vacuum polarization can be simplified to read

Π
(2)
ab ≃ −B̄

2
2(βΛ)4

B̄
(2q2+γ2

2M
2
W )

1

32

(

1

8π2

)2∫ 1

0
dxdy dx δ(1 − x− y − z) (B.15)

× 1

W 3(W+1−x)

[

W+(W+1−x) ln
1−x

W+1−x

]

,

where by “≃” we mean that this relationship is true up to terms of order β2(βΛ)2 which

we have neglected. The possibility of enhanced regions of phase space where the loop

momenta approximately cancel to leave an anomalously small propagator ∼ 1/q2 (rather

than ∼ 1/Λ2) has been replaced by the potential for large contributions from the Feynman

parameter integrals. Indeed, inspection of eq. (B.11) shows when considering only the

leading term in powers of Λ we might find a divergence roughly like
∫

dx/(1 − x)3. This

would be finite when terms of all orders in Λ were included, but would manifest as an

apparent divergence in the truncated series. If such a divergence appears, it should be

regulated at a scale roughly of order M2
χ/Λ

2 where other terms in the perturbation theory

become important, allowing enhanced phase space regions to appear. However, when these

integrals are treated sufficiently carefully we find that no divergences occur and therefore

that no enhanced regions of phase space exist. The integral can be evaluated by an adaptive

Monte Carlo technique, and we find its numerical value to be roughly ≈ 0.025. We conclude

that eq. (B.15) is as small in magnitude, or slightly smaller, than our estimate eq. (B.10).

Chains of bridges. Now consider chains of bridges. We will first give an argument that

the leading term in powers of βΛ is entirely momentum independent for a one-loop bridge,

before generalizing this to chains of arbitrary length. In each case, we use the results of

the previous section to drop terms containing more than a single loop.

The single bridge is shown in figure 8(a). We assume that it describes a bridged

fermion scattering process, between two fermion species which couple conformally to dark

energy via the coupling function F (βfχ) and coupling βf . (The generalization to different

couplings and coupling functions is obvious.) It is easy to see that the effect of the bridge
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is the same as inclusion of an extra term in the propagator, corresponding to

F̄ 2
1 β

2
f

∫

d4r

(2π)4

(

ηab +
rarb
M2
W

)

1

r2 +M2
W − iǫ

1

(r + q)2 − iǫ

≃
iF̄ 2

1 β
2
f

16π2
ηab

∫ 1

0
dx

(

− 1

2

Λ2

Λ2 + ∆2
+

1

2
ln

[

1 +
Λ2

∆2

]

+
1

8M2
W

Λ4 + 2Λ2∆2

Λ2 + ∆2
− ∆2

4M2
W

ln

[

1 +
Λ2

∆2

]

)

, (B.16)

where ∆ satisfies

∆2 = x(1 − x)q2 + xM2
χ + (1 − x)M2

W . (B.17)

Clearly, the leading term in powers of βΛ is momentum independent.

The case of multiple bridges chained together is shown in figure 8(b). One may wonder

why it is necessary to consider such chains, since we have already argued that diagrams

with a large number of loops are suppressed by powers of the phase-space factor 8π2. The

reason is that to study corrections to the propagator, which potentially shift the location

of its pole, one must resum enough diagrams to capture shifts in the physical mass of the

particle. Such shifts are not captured at any finite order in perturbation theory.

Exchange of the chained bridge with n internal vertices is equivalent to introducing

an extra term in the propagator, which takes the form

F̄ 2
1 β

2
f (B̄2β

2)n(i)n
∫

d4q

(2π)4
· · ·
∫

d4t

(2π)4
1

q2 +M2
W − iǫ

1

(q + k)2 +M2
χ − iǫ

· · ·

×
(

ηab +
qaqb
M2
W

)

(

ηbc[q · r − γ2M
2
W ] − qcrb

)

×
(

ηcd +
rcrd
M2
W

)

(

ηdc[r · s− γ2M
2
W ] − rcsd

)

×
(

ηef +
sesf
M2
W

)

· · ·

×
(

ηgg +
tgth
M2
W

)

.

In the first contraction, the cubic term ∼ q3 cancels out. In the second contraction, the

cubic term ∼ r3 cancels out. The same sequence recurs throughout the chain. This

implies that the only way to bring each momentum integral to order ∼ Λ2 is consider only

the quadratic term from each propagator, which multiplies the momentum-independent

quantity γWM
2
W . Accordingly, one can conclude that the resummed contribution at leading

order in βΛ behaves like an extra term in the propagator of the form

i

64π2
F̄ 2

1 (βfΛ)2ηab
1

M2
W

1

1 − B̄2γ2[βΛ]2

64π2

. (B.18)

Once again, this term is momentum-independent and contributes only to an unobservable

shift — the same for all species — in the relevant masses and coupling constants.
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